COMMON PRE-BOARD EXAMINATION 2022-23 Subject: MATHEMATICS (041)

Date:
Duration: 3 Hours
TOTAL MARKS: 80
General Instructions:

1. This question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has $\mathbf{1 8}$ MCQ's and $\mathbf{2}$ Assertion- Reason based questions of 1 mark each.
3. Section B has 5 Very Short Answer(VSA) type questions of 2 marks each.
4. Section C has $\mathbf{6}$ Short Answer (SA) type questions of 3 marks each.
5. Section D has 4 Long Answer (LA) type questions of 5 marks each.
6. Section E has $\mathbf{3}$ source based/ case based/ passage based integrated units of assessment (4 marks each) with sub parts.

SECTION A
 (Multiple Choice Questions)
 Each question carries 1 mark

Q 1	A is a square matrix such that $A^{2}=I$, where I is the identity matrix, then find the value of $(A-1)^{3}+(A+1)^{3}-7 A$ a)! b) -1 c) A d) -A	1
Q2	A is a 3×3 invertible matrix, then what will be value of k if $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det} A)^{k}$ a) 1 b) -1 c) 2 d)-2	1
Q3	If \vec{a} is a unit vector such that $(2 \vec{x}-3 \vec{a}) \cdot(2 \vec{x}+3 \vec{a})=91$, then find $\|\vec{x}\|$ a) 4 b) 5 c) 6 d) 10	1
Q4	For what value of k, the following function is continuous at $x=0$? $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l} \frac{1-\cos 4 x}{8 x^{2}} \\ k \text { if } x=0 \end{array} \text { if } x \neq 0\right.$ a) 1 b) -1 c) $1 / 2$ d) $-1 / 2$	1
Q5	Evaluate $\int_{0}^{\pi / 2} \frac{\sin x-\cos x}{1+\sin x \cos x} d x$ a) π b) $\pi / 2$ c) 1 d) 0	1
Q6	Write the integrating factor of the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x$	1

	$\begin{array}{llll}\text { a) } \tan ^{-1} x & \text { b) } e^{x} & \text { c) } e^{\tan ^{-1} x} & \text { d) } \frac{1}{1+x^{2}}\end{array}$	
Q7	The solution set of the inequality $3 x+4 y<4$ is a) an open half plane not containing origin b) an open half plane containing origin c) the whole $X Y$ [plane not containing the line $3 x+4 y=4$ d) the whole XY plane containing the origin	1
Q8	Find λ when the projection of $\vec{a}=\lambda \hat{\imath}+\hat{\jmath}+4 \hat{k}$ on $\vec{b}=2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}$ is 4 units a) -5 b) -4 c) 4 d) 5	1
Q9	If $\int\left(\frac{x-1}{x^{2}}\right) e^{x}=f(x) e^{x}+C$, then write the value of $f(x)$ a) x b) $1 / x$ c) x^{2} d) $x-1$	1
$\begin{gathered} Q \\ 10 \end{gathered}$	If matrix $A=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]$ and $A^{2}=p A$, write the value of p. a) 2 b) -2 C) 1 d) 4	1
Q11	Let A and B be two events. If $P(A)=0.2, P(B)=0.4$ and $P(A U B)=0.5$, then find $P(A / B)$ a) 0 b) $1 / 2$ C) $1 / 4$ d) 1	
Q12	If A is a square matrix of order 3 such that $\|\operatorname{adj} A\|=81$, then find $\|A\|$. a) ∓ 81 b) ∓ 9 c) ∓ 27 d) ∓ 3	1
Q13	Evaluate $\left\|\begin{array}{ll}\cos 15 & \sin 15 \\ \sin 75 & \cos 75\end{array}\right\|$ a) 0 b) 1 c) -1 d) $1 / 2$	1
Q14	Write the sum of order and degree of the differential equation $\frac{d}{d x}\left\{\left(\frac{d y}{d x}\right)^{3}\right\}=0$ a) 3 b) 4 c) 5 d) 2	1
Q15	Ans d) at every point of the line segment joining the points (0.6,1.6) and (3,0).	1
Q16	What is $\frac{d y}{d x}$ at $x=2$ if $x-y=k$. a) 0 b) 1 c) -1 d) 2	1
Q17	If $\|\vec{a}\|=4,\|\vec{b}\|=3$ and $\vec{a} . \vec{b}=6 \sqrt{3}$, then value of $\|\vec{a} \times \vec{b}\|$. a) 4 b) 3 c) 6 d) 12	1
Q18	If a line makes angles α, β and γ with the coordinate axes, write the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$ a) 1 b)2 c) 3 d) 0	1
Q19	Assertion (A) : $\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)=\frac{2 \pi}{3}$ Reason (R) : $\sin ^{-1}(\sin x)=x$ if $x \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ a) Both A and R are true and R is the correct explanation of A b) Both A and R are true but R is not the correct explanation of A	

	c) A is true but R is false d) \mathbf{A} is false but R is true	1
Q20	Assertion (A) : The angle between the straight lines $\frac{x+1}{2}=\frac{y-2}{5}=\frac{z+3}{4}$ and $\frac{x-1}{1}=\frac{y+2}{2}=\frac{z-3}{-3}$ is 90°. Reason (R): Skew lines are lines in different planes which are parallel and intersecting. a) Both A and R are true and R is the correct explanation of A b) Both A and R are true but R is not the correct explanation of A c) A is true but R is false d) A is false but R is true	1
	SECTION B (2 Marks each)	
Q21	Prove that $\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}$ $\begin{aligned} & \frac{9}{4}\left(\frac{\pi}{2}-\sin ^{-1} \frac{1}{3}\right) \\ & \frac{9}{4}\left(\cos ^{-1} \frac{1}{3}\right) \end{aligned}$ $\frac{9}{4}\left(\sin ^{-1} \frac{2 \sqrt{2}}{3}\right)$ OR Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ be defined by $\mathrm{f}(\mathrm{x})=f(x)=\left\{\begin{array}{cl}\frac{n+1}{2}, & \text { if } n \text { is odd } \\ \frac{n}{2}, & \text { if } n \text { is even }\end{array}\right.$. For all $\mathrm{n} \in N$, state whether f is bijective. Let $\mathrm{n}=1$, odd, $\mathrm{f}(1)=1$ Let $\mathrm{n}=2$, even, $\mathrm{f}(2)=1$ $f(x)$ is not one - one So f is not bijective	1/2
Q22	A particle moves along the curve $6 y=x^{3}+2$. Find the x-coordinate of the points on the curve at which the y - coordinate is changing 8 times as fast as x - coordinate. $\begin{aligned} & 6 \frac{d y}{d t}=3 x^{2} \frac{d x}{d t} \\ & 6 \times 8 \frac{d x}{d t}=3 x^{2} \frac{d x}{d t} \\ & x^{2}=16 \\ & x= \pm 4 \end{aligned}$	1 1

\begin{tabular}{|c|c|c|}
\hline Q23 \& \begin{tabular}{l}
If \(\vec{a}\) and \(\vec{b}\) are unit vectors, then what is the angle between \(\vec{a}\) and \(\vec{b}\) if \(\vec{a}-\sqrt{2} \vec{b}\) be a unit vector.
\[
\begin{gathered}
|\vec{a}-\sqrt{ } 2 \vec{b}|=1 \\
|\vec{a}-\sqrt{ } 2 \vec{b}|^{2}=1 \\
(\vec{a}-\sqrt{ } 2 \vec{b})(\vec{a}-\sqrt{ } 2 \vec{b})=1 \\
1+2-2 \sqrt{ } 2 a \cdot b=1 \\
a \cdot b=1 / \sqrt{ } 2 \\
\cos \theta=\frac{a . b}{|a||b|}=1 / \sqrt{ } 2 \\
\theta=45^{\circ}
\end{gathered}
\] \\
OR \\
If the lines \(\frac{1-x}{3}=\frac{y-2}{2 \lambda}=\frac{2 z-6}{4}\) and \(\frac{1-x}{-3 \lambda}=\frac{y-1}{1}=\frac{10 z-12}{-10}\) are perpendicular to each other, find the value of \(\lambda\) \\
Perpendicular, \(a . b=0\)
\[
\begin{aligned}
\& -3 \times 3 \lambda+2 \lambda \times 1+2 \times-1=0 \\
\& \lambda=-2 / 7
\end{aligned}
\]
\end{tabular} \& 1/2 \\
\hline Q24 \& If \(y=\) logtan \(\left(\frac{\pi}{4}+\frac{x}{2}\right)\), then show that \(\frac{d y}{d x}=\sec x\).
\[
\begin{aligned}
\& \frac{d y}{d x}=\frac{1}{\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)} \sec ^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right) \frac{1}{2} \\
= \& \frac{1}{2 \sin \left(\frac{\pi}{4}+\frac{x}{2}\right) \cos \left(\frac{\pi}{4}+\frac{x}{2}\right)} \\
= \& \frac{1}{\sin \left(\frac{\pi}{2}+x\right)} \\
= \& \frac{1}{\cos x}=\sec x
\end{aligned}
\] \& 1

$1 / 2$
$1 / 2$

\hline Q25 \& Let $\vec{a}=\hat{\imath}+4 \hat{\jmath}+2 \widehat{k}, \quad \vec{b}=3 \hat{\imath}-2 \hat{\jmath}+7 \widehat{k}$, and $\vec{c}=2 \hat{\imath}-\hat{\jmath}+4 \widehat{k}$, find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c}=18$.

$$
\begin{aligned}
& P=\lambda(a \times b) \\
& a \times b=32 i-j-14 k \\
& \lambda(64+1-56)=18 \\
& \lambda=2
\end{aligned}
$$ \& 1

$1 / 2$
$1 / 2$

\hline
\end{tabular}

Q26 Evaluate $\int \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$
Let $\mathrm{t}=x^{2}$

$$
\frac{1}{(t+1)(t+4)}=\frac{A}{(t+1)}+\frac{B}{(t+4)}
$$

$A=1 / 3$ and $B=-1 / 3$
$\int \frac{1 / 3}{\left(x^{2}+1\right)}-\int \frac{1 / 3}{\left(x^{2}+4\right)}=1 / 3 \tan ^{-1} x-\frac{1}{6} \tan ^{-1} x / 2+C$
Q27 A problem in Mathematics is given to three students whose chances of solving it are $1 / 2,1 / 3$ and $1 / 4$. If all of them try to solve the problem, what is the probability that (i) problem is solved (ii) exactly one of them will solve.
$P(A)=1 / 2, P(B)=1 / 3, P(C)=1 / 4, P\left(A^{\prime}\right)=1 / 2, P\left(B^{\prime}\right)=2 / 3, P\left(C^{\prime}\right)=3 / 4$
(i) $1-\mathrm{P}\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}\right)=1-1 / 2 \times 2 / 3 \times 3 / 4=1-1 / 4=3 / 4$
(ii) $P\left(A B^{\prime \prime} C^{\prime}\right)+P\left(A^{\prime} B C^{\prime}\right)+P\left(A^{\prime} B^{\prime} C\right)=1 / 2 \times 2 / 3 \times 3 / 4+1 / 2 \times 1 / 3 \times 3 / 4+1 / 2 \times 2 / 3 \times 1 / 4$

$$
=11 / 24
$$

OR

There are 4 cards numbered 1 to 4 , one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean value of X.
$\begin{array}{llllll}X: & 3 & 4 & 5 & 6 & 7\end{array}$
$P(X): 1 / 6 \quad 1 / 6 \quad 2 / 6 \quad 1 / 6 \quad 1 / 6$
Mean $=3 \times 1 / 6+4 \times 1 / 6+5 \times 2 / 6+6 \times 1 / 6+7 \times 1 / 6=5$
Q28 Evaluate $\int_{-1}^{2}\left|x^{3}-x\right| d x$

$$
\begin{gathered}
\int_{-1}^{0} x^{3}-x+\int_{0}^{1} x-x^{3}+\int_{1}^{2} x^{3}-x \\
{\left[\frac{x^{4}}{4}-\frac{x^{2}}{2}\right]+\left[\frac{x^{2}}{2}-\frac{x^{4}}{4}\right]+\left[\frac{x^{4}}{4}-\frac{x^{2}}{2}\right]} \\
0 \\
-1
\end{gathered}
$$

Evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{d x}{1+\sqrt{\cot x}}$

	$\begin{gathered} I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x \\ I=\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x \\ 2 I=\int_{\pi / 6}^{\pi / 3} d x \\ I=\pi / 12 \end{gathered}$	$1 / 2$ 1 1 $1 / 2$
Q29	Solve the differential equation $x \frac{d y}{d x} \sin \left(\frac{y}{x}\right)+x-y \sin \left(\frac{y}{x}\right)=0$ $\frac{d y}{d x}=\frac{y \sin \left(\frac{y}{x}\right)-x}{x \sin \left(\frac{y}{x}\right)}$ Put $\mathrm{y}=\mathrm{vx}$ so that $\frac{d y}{d x}=v+x \frac{d v}{d x}$ $\begin{gathered} v+x \frac{d v}{d x}=\frac{v \sin v-1}{\sin v} \\ x \frac{d v}{d x}=\frac{-1}{\sin v} \\ \int-\sin v d v=\int \frac{d x}{x} \\ \cos v=\log \mathrm{x}+\mathrm{C} \\ \cos (\mathrm{y} / \mathrm{x})=\log \mathrm{x}+\mathrm{C} \end{gathered}$ OR Solve the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x$ $\begin{array}{ll} \text { IF }=e^{\int \frac{1}{1+x^{2}}}=e^{\tan ^{-1} x} & \frac{d y}{d x}+\frac{y}{1+x^{2}}=\frac{\tan ^{-1} x}{1+x^{2}} \\ y \cdot e^{\tan ^{-1} x}=\int \frac{\tan ^{-1} x}{1+x^{2}} \cdot e^{\tan ^{-1} x} & \end{array}$ Put $t=\tan ^{-1} x$ $\begin{gathered} y \cdot e^{\tan ^{-1} x}=\int t e^{t} d t \\ =t e^{t}-e^{t} \\ y \cdot e^{\tan ^{-1} x}=e^{\tan ^{-1} x}\left(\tan ^{-1} x-1\right)+C \end{gathered}$	1/2

Q31	Evaluate $\int \frac{e^{x}}{\sqrt{5-4 e^{x}-e^{2 x}}} d x$ Put $e^{x}=t$ $\begin{aligned} & \quad I=\int \frac{d t}{\sqrt{-\left(t^{2}+4 t-5\right)}} \\ & =\int \frac{d t}{\sqrt{-\left[(t+2)^{2}-3^{2}\right]}} \\ & =\int \frac{d t}{\sqrt{3^{2-(t+2)^{2}}}} \\ & =\sin ^{-1} \frac{t+2}{3} \\ & =\sin ^{-1} \frac{e^{x}+2}{3}+C \end{aligned}$	$1 / 2$ $1 / 2$ 1 1 1
	SECTION D (5 Marks each)	
Q32	Make a rough sketch of the region $\left\{(x, y): 0 \leq y \leq x^{2}, 0 \leq y \leq x, 0 \leq x \leq 2\right\}$ and find the area of the region using integration. The points of intersection of the parabola $y=x^{2}$ and the line $y=x$ are $(0,0)$ and $(1,1)$. Required Area $=\int_{0}^{1} y_{\text {parabola }} d x+\int_{1}^{2} y_{\text {line }} d x$ Required Area $=\int_{0}^{1} x^{2} d x+\int_{1}^{2} x d x$ $=\left[\frac{x^{2}}{3}\right]_{0}^{1}+\left[\frac{x^{2}}{2}\right]_{1}^{2}=\frac{1}{3}+\frac{3}{2}=\frac{11}{6}$	1 1 2 2 1
Q33	Let R be the relation defined on the set of natural numbers N as $\mathrm{R}=\{(x, y): x \in N, y \in N, 2 x+$ $y=41\}$. Find the domain and range of the relation R. Also verify R is reflexive, symmetric or transitive. Domain $=\{1,23, \ldots \ldots \ldots ., 20\}$	1

Equation of the line is $r=a+\lambda b$
$a=2 i+j+3 k$
$b=(i+2 j+3 k) \times(-3 i+2 j+5 k)=4 i-14 j+8 k$

Vector form is $r=(2 i+j+3 k)+\lambda(4 i-14 j+8 k)$
Cartesian form is $\frac{x-2}{4}=\frac{y-1}{-14}=\frac{z-3}{8} \rightarrow \frac{x-2}{2}=\frac{y-1}{-7}=\frac{z-3}{4}$
Q35 Solve the following system of linear equations using matrix method:
$x-y+2 z=7,3 x+4 y-5 z=-5,2 x-y+3 z=12$
$\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3\end{array}\right] \quad \mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{c}7 \\ -5 \\ 12\end{array}\right]$
$I A I=4$
Minor $=\left[\begin{array}{ccc}7 & 19 & -11 \\ -1 & -1 & 1 \\ -3 & -11 & 7\end{array}\right]$

Cofactor $=\left[\begin{array}{ccc}7 & -19 & -11 \\ 1 & -1 & -1 \\ -3 & 11 & 7\end{array}\right]$

Adjoint $=\left[\begin{array}{ccc}7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7\end{array}\right]$
$\mathrm{A}^{-1}=1 / \mathrm{AI}\left[\begin{array}{ccc}7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7\end{array}\right]$
$X=A^{-1} B=1 / 4\left[\begin{array}{ccc}7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7\end{array}\right]\left[\begin{array}{c}7 \\ -5 \\ 12\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$

Q36 (i) $\mathrm{f}(x)=-0.1 x^{2}+m x+98.6$, being a polynomial function, is differentiable everywhere, hence, differentiable in $(0,12)$
(ii) $f^{\prime}(x)=-0.2 x+m$

Since, 6 is the critical point,
$f^{\prime}(6)=0 \Rightarrow m=1.2$
(iii) $f(x)=-0.1 x^{2}+1.2 x+98.6$
$f^{\prime}(x)=-0.2 x+1.2=-0.2(x-6)$

In the Interval	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	Conclusion
$(0,6)$	+ ve	f is strictly increasing in [0, 6]
$(6,12)$	- -ve	f is strictly decreasing in [6, 12]

OR
(iii) $f(x)=-0.1 x^{2}+1.2 x+98.6$,
$f^{\prime}(x)=-0.2 x+1.2, f^{\prime}(6)=0$,
$f^{\prime \prime}(x)=-0.2$
$f^{\prime \prime}(6)=-0.2<0$
Hence, by second derivative test 6 is a point of local maximum. The local maximum value $=f(6)=-0.1 \times 6^{2}+1.2 \times 6+98.6=102.2$
We have $f(0)=98.6, f(6)=102.2, f(12)=98.6$
6 is the point of absolute maximum and the absolute maximum value of the function $=102.2$.
0 and 12 both are the points of absolute minimum and the absolute minimum value of the function $=98.6$.

Q37	(i) Since ' ${ }^{2}$ ' is cast of malking tank $\begin{aligned} & \therefore C=70 x y+45 \times 2(2 x+2 y) \\ & =c-70 x y+50(2 x+2 y) \\ & \Rightarrow C-70 x y+180(x+y) 1-2 \cdot x-y-8-y-\frac{5}{2} \rightarrow y-\frac{4}{x} 1 \\ & \Rightarrow C=70 x \times \frac{4}{x}+180\left(x+\frac{4}{2}\right) \\ & \Rightarrow C-280+180\left(x+\frac{4}{x}\right) \end{aligned}$ (ii) $x-y=4$ Volume of tank - length \times hreadth \times height (Deprh) $\begin{aligned} & 8-x \cdot y \cdot 2 \\ & =2 x y-8=x y-4 \end{aligned}$ (iii) For maximum ar minimum $\begin{aligned} & \frac{\frac{N}{2 x}-0}{\frac{4}{d x}}\left(280+180\left(x+\frac{4}{x}\right)\right)-0 \rightarrow 180\left(1+4\left(-\frac{1}{x^{2}}\right)\right)-0 \\ & \Rightarrow 180\left(1-\frac{4}{x^{2}}\right)-0 \Rightarrow 1-\frac{4}{x^{2}}=0 \\ & \Rightarrow \frac{1}{x^{2}}=1 \Rightarrow x^{2}=4 \\ & \Rightarrow x-12 \\ & \Rightarrow x=2 \text { (lengit can never be neggative) } \end{aligned}$	1 1 1
Q38	(i) Let A be the eveok of committing an errot and $\mathrm{E}_{3}, \mathrm{E}_{2}$ and E_{3} be the events that Govind, Priynoka and Tahseen processed the form. $\begin{aligned} & P\left(E_{1}\right)=0.5, P\left(E_{2}\right)=0.2, P\left(E_{3}\right)=0.3 \\ & P\left(\frac{A}{E_{1}}\right)=0.06, P\left(\frac{A}{E_{2}}\right)=0.04, P\left(\frac{A}{E_{1}}\right)=0.03 \end{aligned}$ Using Bayes' theorem, we have (ii) Let A be the cwent of commituing an error and $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3} be the events that Govind, Priyanka and Talseen the form. $\begin{aligned} & P\left(E_{1}\right)=0.5 . P\left(E_{2}\right)=0.2, P\left(E_{2}\right)=0.3 \\ & P\left(\frac{A}{r_{1}}\right)=0.06 . P\left(\frac{A}{r_{2}}\right)=0.04 . P\left(\frac{A}{r_{1}}\right)=0.03 \\ & P\left(A \cap E_{2}\right)=P\left(\frac{A}{L_{2}}\right) \cdot P\left(E_{2}\right) \\ & \Rightarrow 0.04 \times 0.2=0.008 \end{aligned}$	2

